skip to main content


Search for: All records

Creators/Authors contains: "Costello, Robin A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    We used an opportunity gap framework to analyze the pathways through which students enter into and depart from science, technology, engineering, and mathematics (STEM) degrees in an R1 higher education institution and to better understand the demographic disparities in STEM degree attainment.

    Results

    We found disparities in 6-year STEM graduation rates on the basis of gender, race/ethnicity, and parental education level. Using mediation analysis, we showed that the gender disparity in STEM degree attainment was explained by disparities in aspiration: a gender disparity in students’ intent to pursue STEM at the beginning of college; women were less likely to graduate with STEM degrees because they were less likely to intend to pursue STEM degrees. However, disparities in STEM degree attainment across race/ethnicities and parental education level were largely explained by disparities in attrition: persons excluded because of their ethnicity or race (PEERs) and first generation students were less likely to graduate with STEM degrees due to fewer academic opportunities provided prior to college (estimated using college entrance exams scores) and more academic challenges during college as captured by first year GPAs.

    Conclusions

    Our results reinforce the idea that patterns of departure from STEM pathways differ among marginalized groups. To promote and retain students in STEM, it is critical that we understand these differing patterns and consider structural efforts to support students at different stages in their education.

     
    more » « less
  2. Bolger, Molly (Ed.)
    Traditional biology curricula depict science as an objective field, overlooking the important influence that human values and biases have on what is studied and who can be a scientist. We can work to address this shortcoming by incorporating ideological awareness into the curriculum, which is an understanding of biases, stereotypes, and assumptions that shape contemporary and historical science. We surveyed a national sample of lower-level biology instructors to determine 1) why it is important for students to learn science, 2) the perceived educational value of ideological awareness in the classroom, and 3) hesitancies associated with ideological awareness implementation. We found that most instructors reported “understanding the world” as the main goal of science education. Despite the perceived value of ideological awareness, such as increasing student engagement and dispelling misconceptions, instructors were hesitant to implement ideological awareness modules due to potential personal and professional consequences. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Georgiou, H. (Ed.)
    Addressing the challenges facing society and the world will require an understanding of the biases and limitations of science. To combat these challenges, here, we advocate for the incorporation of ideologically aware (IA) material into postsecondary biology curricula. IA materials communicate to students how biases, assumptions, and stereotypes inform approaches to and outcomes of science. By engaging with IA materials, student awareness of the impact of science on social problems is expected to increase. In this paper, we situate this IA approach with two other pedagogical approaches that incorporate societally relevant content: culturally relevant pedagogy and socioscientific issues. We then call for research to test ways of supporting instructor implementation of IA material, to evaluate the impact of IA topics on student academic and sociopsychological outcomes, and to explore how to implement IA material in different cultural and social settings. Throughout, we focus on IA topics in the context of postsecondary biology classrooms but encourage the incorporation of IA materials across scientific disciplines and educational settings. Our hope is that greater inclusion of IA materials will create more transparent, scientifically accurate, and inclusive classrooms. 
    more » « less
  4. Abstract

    Both individual and group behavior can influence individual fitness, but multilevel selection is rarely quantified on social behaviors. Social networks provide a unique opportunity to study multilevel selection on social behaviors, as they describe complex social traits and patterns of interaction at both the individual and group levels. In this study, we used contextual analysis to measure the consequences of both individual network position and group network structure on individual fitness in experimental populations of forked fungus beetles (Bolitotherus cornutus) with two different resource distributions. We found that males with high individual connectivity (strength) and centrality (betweenness) had higher mating success. However, group network structure did not influence their mating success. Conversely, we found that individual network position had no effect on female reproductive success but that females in populations with many social interactions experienced lower reproductive success. The strength of individual-level selection in males and group-level selection in females intensified when resources were clumped together, showing that habitat structure influences multilevel selection. Individual and emergent group social behavior both influence variation in components of individual fitness, but impact the male mating success and female reproductive success differently, setting up intersexual conflicts over patterns of social interactions at multiple levels.

     
    more » « less
  5. Abstract

    Social interactions with conspecifics can dramatically affect an individual’s fitness. The positive or negative consequences of interacting with social partners typically depend on the value of traits that they express. These pathways of social selection connect the traits and genes expressed in some individuals to the fitness realized by others, thereby altering the total phenotypic selection on and evolutionary response of traits across the multivariate phenotype. The downstream effects of social selection are mediated by the patterns of phenotypic assortment between focal individuals and their social partners (the interactant covariance, Cij′, or the multivariate form, CI). Depending on the sign and magnitude of the interactant covariance, the direction of social selection can be reinforced, reversed, or erased. We report estimates of Cij′ from a variety of studies of forked fungus beetles to address the largely unexplored questions of consistency and plasticity of phenotypic assortment in natural populations. We found that phenotypic assortment of male beetles based on body size or horn length was highly variable among subpopulations, but that those differences also were broadly consistent from year to year. At the same time, the strength and direction of Cij′ changed quickly in response to experimental changes in resource distribution and social properties of populations. Generally, interactant covariances were more negative in contexts in which the number of social interactions was greater in both field and experimental situations. These results suggest that patterns of phenotypic assortment could be important contributors to variability in multilevel selection through their mediation of social selection gradients.

     
    more » « less
  6. Abstract

    Social interactions drive many important ecological and evolutionary processes. It is therefore essential to understand the intrinsic and extrinsic factors that underlie social patterns. A central tenet of the field of behavioural ecology is the expectation that the distribution of resources shapes patterns of social interactions.

    We combined experimental manipulations with social network analyses to ask how patterns of resource distribution influence complex social interactions.

    We experimentally manipulated the distribution of an essential food and reproductive resource in semi‐natural populations of forked fungus beetlesBolitotherus cornutus. We aggregated resources into discrete clumps in half of the populations and evenly dispersed resources in the other half. We then observed social interactions between individually marked beetles. Half‐way through the experiment, we reversed the resource distribution in each population, allowing us to control any demographic or behavioural differences between our experimental populations. At the end of the experiment, we compared individual and group social network characteristics between the two resource distribution treatments.

    We found a statistically significant but quantitatively small effect of resource distribution on individual social network position and detected no effect on group social network structure. Individual connectivity (individual strength) and individual cliquishness (local clustering coefficient) increased in environments with clumped resources, but this difference explained very little of the variance in individual social network position. Individual centrality (individual betweenness) and measures of overall social structure (network density, average shortest path length and global clustering coefficient) did not differ between environments with dramatically different distributions of resources.

    Our results illustrate that the resource environment, despite being fundamental to our understanding of social systems, does not always play a central role in shaping social interactions. Instead, our results suggest that sex differences and temporally fluctuating environmental conditions may be more important in determining patterns of social interactions.

     
    more » « less